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Abstract 

Compressive Sensing has become one of the standard 

methods of face recognition within the literature. We show, 

however, that the sparsity assumption which underpins 

much of this work is not supported by the data. This lack 

of sparsity in the data means that compressive sensing ap­

proach cannot be guaranteed to recover the exact signal, 

and therefore that sparse approximations may not deliver 

the robustness or performance desired. In this vein we show 

that a simple £2 approach to the face recognition problem 

is not only significantly more accurate than the state-of-the­

art approach, it is also more robust, and much faster. These 

results are demonstrated on the publicly available YaieB 

and AR face datasets but have implications for the appli­

cation of Compressive Sensing more broadly. 

1. Introduction 

The application of Compressive Sensing (CS) to the 

problem of face recognition has received significant recent 

attention in the literature (see [18, 19, 14] for example). The 

goal of many such methods has been to exploit the underly­

ing sparsity in the problem in order to improve the robust­

ness, speed, or accuracy with which classification might be 

performed, or all three. As in many applications of CS, 

however, the sparsity of in the problem is assumed, rather 

than proven, or measured. We show here that the sparsity 

assumption is not supported by data, and that an £2-based 

approach out-performs the state-of-the-art in CS methods in 

terms of speed, accuracy, and robustness. The implications 

are important for the application of CS to face recognition 

but also to other problems where sparsity is assumed rather 

than proven. 

2. The space of all face images 

Consider face recognition with n frontal training face 

images collected from K subjects. Let nk denote the num­

ber of training images of subject k , thus n = 'Lf=l nk. 
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Without loss of generality, we assume that all the data have 

been sorted according to their labels and then we collect 

all the vectors in a single matrix A with m rows and n 

columns, given by 

A = [ xl, ... ,xnl E jRmxn. (1) 

The assumption which underpins the application of CS to 

face recognition by Yang et al. [19] , Wright et al. [18] , and 

Shi et al. [14] is as follows: 

Assumption 1 Any test image! lies in the subspace 

spanned by the training images belonging to the same per­

son. That is for any test image x, without knowing its la­

bel information, it's assumed that there exists a ry-sparse2 

a = (aI, a2, ... , an) such that 

x=Aa. 

To seek a sparse solution, one could use 

s.t. x = Aa. 

(2) 

(3a) 

(3b) 

Solving this problem via linear programming becomes 

computationally expensive when m is large, however. 

In order to exploit the presumed sparsity in the problem 

the authors in [19] and [18] generate a random matrix <I> E 
jRdxm (where d « m) and identify the vector a which 

minimises the following £1 problem: 

s.t. <I>x = <I>Aa, 

or the related problem: 

min IlallRl aElIl?n 

S.t. II <I> x - <I>Aallc2 :::; E, 

(4a) 

(4b) 

(5a) 

(5b) 

'The image here can be either an original image, or a feature image 
extracted from the original one, e.g. an eigenface. Often the dimensionality 
of the feature has to be reduced due to the complexity of the recognition 
algorithm. 

2 A n-dimensional signal is said 1)-sparse if it has at most 1) non-zero 
entries. 



for a given error tolerance c > O. Introducing the matrix 

cP significantly reduces the computational complexity (par­

ticularly when d « m), yet the CS signal recovery theorem 

[5, 4, 11] shows that when d ;::: O(17log(n/17)) the signal a 

can be exactly recovered (that is, it reaches the optimum of 

the original problem specified in Equation (3)) with over­

whelming probability at least 1 - eO( -d) . 
Shi et al. in [14] showed the connection between Hash 

Kernels [12, 13, 17] and CS. In doing so they showed that 

it is possible to replace cP with an implicit hash matrix H 
in order to reduce storage requirements and speed up face 

recognition with Orthogonal Matching Pursuit (OMP) [15]. 

2.1. Is the set of face images really sparse? 

Despite the results of [19], [18] and [14], it is clear 

that the validity of Assumption 1 depends on the particu­

lar data set being used. What is not as immediately clear 

is that Assumption 1 does not hold for data of the fonn 

typically used to evaluate face recognition algorithms. As­

sumption 1 is sometimes justified on the basis of the result 

in [2] that the images of a rigid Lambertian surface under 

varying illumination lie close to a 9-dimensional linear sub­

space. This presumes perfect registration of the images, no 

self-shadowing, occlusion, or specularities, and ignores the 

fact that faces are neither rigid nor Lambertian, however. In 

order to evaluate the validity of Assumption 1 directly we 

form the matrix A in the same manner as in [19] and [18]. 

The AR dataset, which is used in many face recogni­

tion papers including those above, consists of 26 aligned 

images of each subject in different lighting conditions and 

with different facial expressions and disguises. We ran­

domly selected 100 such subjects and cropped the images 

to 165 x 120 pixels and converted to grayscale (as in [19]), 

and, using (1), formed the matrix A where m = 19800 and 

n = 2600. A plot of the log of the singular values of this 

matrix is given in Figure 1. 

Typically a subset (often half) of the database is used 

for training, and the remainder for testing. If Assumption 1 

holds then we would hope that 13 training images per sub­

ject would suffice to span the space of all face images of the 

subject, and thus that the remaining (testing) 13 were linear 

combinations of the training set. This would lead to a ma­

trix A with rank at most 1300 (rank 13 per subject for 100 
subjects). Figure 1 does not support this hypothesis, how­

ever, as there is no obvious dip in the singular values of A 
at 1300, or any at other point. Note that Figure 1 depicts the 

singular values of the matrix of all face images in the AR 

data set, rather than only those for a single subject. It thus 

shows not only that there is little redundancy in AR dataset 

face images for any single subject, but also that there is lit­

tle redundancy in AR dataset face images for all subjects 

collectively. The first few singular values are significantly 

higher than the remainder, which reflects the commonality 
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in the overall shape of the face, but there is little differenti­

ation between the remaining components. 

The fact that there is no significant dip in the singular 

values of A does not discount sparsity completely, as there 

is inevitably noise in the training data, but it gives an indi­

cation that there is no simple linear dependence in the data 

set. 

Figure 1. The log of the singular values of the data matrix A cal­
culated using the AR data set, and for comparison, of a matrix of 
the same size with elements sampled from N(O, 1). 

Having seen that the the training data are not linearly de­

pendent we now show that the sparsity espoused in [19, 18] 

and [14] is not a feature of the problem, but of the solu­

tion. In applying the matrix cP E jRdxm (where d « m) 
the methods proposed cause the problem to become sparse, 

with a degree proportional to the value of d selected. Fig­

ure 2 shows the values of a estimated by solving equa­

tion (4) directly when A is constructed as above, but from 

13 images each of 100 subjects, and x represents another 

image from the AR dataset. Two matrices cP have been 

used, one with d = n - 1 and one with d = 300. The 

plots show that the coefficients a are not sparse until the 

selection of a small d forces them to be so. 

We show below that the CS methods for face recognition 

listed above achieve their state-of-the-art results on the AR 

and Yale B datasets only when the the number of features d 
is at least 300. This and Figure 2 imply that the coefficients 

of a are not as sparse as may have been hoped, and that 

at least 300 non-zero coefficients are required in order to 

achieve acceptable classification perfonnance. 

This analysis draws into question the theoretical support 

for all face recognition methods based on Assumption 1 and 

any method relying on the sparsity of the coefficients a. 

This does not mean that the £1 nonn has no place in face 

recognition, however, but rather that it needs to be applied 

appropriately. 

3. Robust vs. sparse i! 1 

One argument with the analysis above might be that the 

£1 term is intended to achieve robustness, rather than indi­

cating a belief in the sparsity of the coefficients. This is 

an important distinction. The £1 norm is used in CS as a 

tractable alternative to the £0 nonn [3]. Sparseness does not 



Figure 2. Visualising the sparsity of ex when recovered by solving 
equation (4). (a) Plot of ex when d = 1299. (b) Plot of sorted ex 

when d = 1299. (c) Plot of ex when d = 300. (d) Plot of sorted ex 

when d = 300. 

necessarily lead to robustness to the presence of outliers. 

To achieve robustness, one could use £l-Regression [16, 

chap. 12.4] as follows: 

(6) 

which avoids overly penalising gross outliers. 

The £1 norm in CS and £1 norm in £l-Regression are, 

however, two unrelated uses of the same norm. The two 

applications differ in the quantities to which the £1 norm 

is applied. Robustness cannot therefore be used to justify 

applying the £l-norm to the coefficients a without further 

explanation. No such explanation is given, however. 

The problem with (6) is that solving such a linear pro­

gram can be computationally expensive as the data size 

grows. Rather than resort to approaches such as those in (4) 

and (5), however, we now show that faster, more accurate, 

and more robust methods may be achieved by modelling 

outliers explicitly and using the £2 norm. 

4. The orthonormal £2 norm method 

In contrast to the £1 case, it is possible to estimate a 
using the £2 norm by solving 

argmin Ilx -AaIIE2· 
aElRn 

(7) 

Even when the system is overdetermined, the optimal solu­

tion, (in the sense of the smallest reconstruction error) can 

be recovered by a = (AT A)-1 AT x. 
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Algorithm 1 Orthonormal £2 Face Recognition 

Input: a training image matrix A for K subjects, a test 

image matrix X. 
Compute QR = A. 
for x E Xdo 

a = R-1QTx 
find the identity of image x via (10). 

end for 
Output: identity for all test images. 

Solving (7) efficiently requires re-formulating the 

psuedo-inverse, however. By QR factorisation of A, we 

have A = QR, where Q forms a orthonormal basis, and R 
is an upper triangle matrix. Therefore, 

Consequently, we can estimate a via 

a = R-1QTx .  

(8) 

(9) 

Here R -1 Q T remains the same for all x. So we just need 

to compute R -1QT once and store it. If a set of test images 

is provided as X whose columns are test images, then A = 
R-1QTX. 

Once the coefficients are estimated, one can find the 

identity of image x via minimising the residuals 

c*(x) = argmin I lx -Akakllp2 (10) 
k 

for k = 1, . . .  ,K, where ak is the nk dimensional subvec­

tor consisting of components of a and Ak is a m-by-nk 
submatrix of A, both corresponding to the basis of person 

k. A similar reformulation applies to the Nearest Subspace 

method [6]. 

It should also be noted that the distance measure used in 

(10) is different from that of the nearest subspace method. 

This difference becomes apparent when comparing the co­

ordinates given by the respective approaches: 

ak=Ik(ATA)-lATx (11) 

(12) 

where Ik = [ 0 I ... 0] is a matrix extracting 

the coordinates corresponding to the k-th individual from 

a. These differences are discussed in length in the supple­

mentary material of [18]. 

5. Face recognition without corruption 

The above orthonormal £2 minimisation approach (Algo­

rithm 1), leads to a very efficient face recognition method 

when faces are not corrupted by random noise or foreign 

objects. 

In order to compare to CS based face recognition, we use 

the same datasets (Extended YaieB and AR) as [18, 19, 14]. 



Figure 3. Prediction on face wearing sunglasses. Top two rows: 

for £2 method. Bottom two rows: for £1 method. (a) and (i) are 
the test faces. (b) and U) are used to show the person's identity 
by displaying the first training image from that person. (c) and (k) 
are the plots of the estimated n. (d) and (1) are the gross residual 
images x - [A, B]n. (e) and (m) are the reconstructed images 
by n, i.e. Ao: + B,13. (f) and (n) are the reconstructed images by 
the predicted person's training images only, i.e. Ao:c*. (g) and (0) 
are the reconstructed images by all subjects i.e. Ao:. (h) and (p) 
are B,13. For visualisation purpose, all residual images (d,h,l,p) are 
re-scaled such that the highest pixel value is 255. 

Datasets The AR dataset consists of over 3,000 frontal 

images of 126 individuals. There are 26 images of each in­

dividual, taken at two different occasions [10]. The faces 

in AR contain variations such as illumination change, ex­

pressions and facial disguises (i.e. sun glasses or scarf). We 

randomly selected 100 subjects (50 male and 50 female) for 

our experiments. For each subject, we randomly permute 

the 26 images and then take the first half for training and the 

rest for testing. This way, we have 1,300 images for train­

ing and 1, 300 images for testing. For statistical stability, we 
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generate 10 different training and test dataset pairs by ran­

domly permuting 10 times. The extended YaleB dataset [7] 

consists of 2,414 frontal face images of 38 subjects. They 

are captured under various lighting conditions and cropped 

and normalised to 192 x 168 pixels. For our experiment, 

we take 62 images per person thus in total we use 2, 35 6 
images. Again for each subject, we randomly permute the 

62 images and take the first half for training and the rest 

for testing. For statistical stability, we generate 10 different 

training and test dataset pairs. 

Performance comparisons We compare our fast £2 norm 

method to the £1 norm method with a Gaussian random ma­

trix [18], OMP on a Gaussian random matrix and OMP on 

a Hash matrix [14] and the Nearest Subspace method [6]. 

Wright et ai. in [18] use flattened raw pixel values as fea­

tures after downsampling the images claiming that this is 

necessary for computational tractability. However, we show 

our £2 norm method has no problem dealing with the orig­

inal feature dimension. We thus simply flatten the original 

165 x 120 images to feature vectors of length 19800. 
All of the methods listed above need to estimate G, then 

check the test image's identity by identifying the minimal 

residual. There are also off-line processes (independent of 

the test images) which need to be carried out for each of the 

methods. For the £2 norm method, R -lQT must be com­

puted, but this can happen before hand. For the £ 1 norm 

method, the Gaussian random matrix R must be generated 

and RA computed. For both OMP methods (Random OMP 

and Hash OMP), each column of A must be normalied to 

unit length (£2 distance). Random OMP requires a Gaussian 

random matrix R and that RA be computed. In principle, 

Hash OMP does not need to compute the Hash matrix H ex­

plicitly. One can feed the data stream into the hash code and 

generate the HA on the fly. However, for ease of compar­

ison, we generate it explicitly here and compute HA. We 

solve (4) using CVX, a package for specifying and solving 

convex programs [9, 8]. 

Results All algorithms are evaluated on the training and 

test dataset pairs constructed as described above. The com­

parison results for the AR dataset are reported in Table 1. 

As we can see, £2 has the highest average recognition rate 

at 95 .89% , and the second best is the £ 1 with norm d = 300 
which acheives 93.12% . What is notable here is that £2 

takes only 2.71 seconds (in matlab) to estimate 0: for all 

1,300 test images, which is over 2, 000 times faster than the 

£1 method with 2.77% higher recognition rate. The offline 

process of the £2 norm method takes only 28.74 seconds, 

which is negligible for an offline process. The speed of the 

Nearest Subspace method is comparable with that of the £2 

norm method, but it has it has worse average recognition 

rate and significantly larger standard deviation. Likewise, 



Table 5. CheckID running time (for the £2 norm method) vs. 
recognition rate. d = the number of rows in q.. Time = running 
time for check faces' identification. All running time are in sec­
onds. RecRate = Recognition Rate. Data were randomly permuted 
10 times, thus all measures are reported as the average ± standard 
deviation. 

d Time RecRate 

213 28.14 ± 0.60s 95.90 ± 2.35% 
211 7.34 ± 0.02s 95.92 ± 2.33% 
29 2.47 ± O.03s 95.90 ± 2.35% 
27 1.05 ± O.03s 95.87 ± 2.33% 
25 0.90 ± O.03s 95.88 ± 2.21 % 
23 0.88 ± O.03s 95.57 ± 2.42% 
22 0.80 ± O.Ols 95.08 ± 2.65% 
21 0.79 ± O.Ols 85.35 ± 1.98% 

on the YaleB dataset, the £2 norm method outperforms its 

competitors as shown in Table 2. We do not report the re­

sults for d which lead to non-competitive results in Table 2. 

All experiments are conducted in Matlab running on a PC 

with a 2.8GHz CPU with 8GB Memory. 

Improving CheckID performance Estimating the coef­

ficients using the £2-based method is so fast that the time 

taken to check the identity of the result (ChecklD) is the 

dominating factor in its execution time. We can, how­

ever, improve the speed of the ChecklD process with­

out noticeably degrading the recognition rate. Recall that 

CheckID uses (10) for all methods except the nearest sub­

space method (reported in Table 1 and 2). Instead, given 

an estimated G, we can check the identity in a random pro­

jected space, that is c*(x) = argmink I I <I> x - <I>AkGkllc2' 
where <I> E �d,m. Note that if the test image set denoted 

as Atest is known, then <I>Atest and <I>A only need to be 

computed once and the complexity of ChecklD decreases 

as d decreases. Fortunately, we discover that decreasing d 
significantly speeds up the CheckID without noticeably de­

generating the recognition rate, as shown in Table 5. For ex­

ample, ChecklD of £2 norm method takes 69.15 seconds in 

Table 1 with recognition rate 95 .89% , whereas it takes only 

0.88 seconds with recognition rate 95 .5 7% when d = 23. 
In fact, the recognition rate only has a significant drop at 

d = 21. The recognition rate is preserved despite the small 

values of d in the spirit of 10hnson-Lindenstrauss Lemma 

[1]. 

6. Face recognition with corruption 

White noise is quite common, and commonly assumed 

in signal transmission problems. We therefore add random 

noise from normal distributions to the existing AR images 
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Figure 4. Recognition Rate v.s. Noise Factor on the AR dataset 
images with additive Gaussian noise. 

DtJDD 
(a) (b) (c) (d) 

Figure 5. Boxes representing the disguising objects. The boxes 
have intensity 0.1 x 255 and non-box areas have intensity O. 

in order to test resilience to normal noise sources. That is, 

where Zi "-' N(O, 1) , and b > 0 is the noise factor. 

In practice, we need to make sure Xi is still a valid 8-bit 

grey scale image, which can be simply done by truncating 

pixel values outside the interval [0, 25 5 ]  before applying all 

methods to the noisy dataset. We test £2, £1 based methods 

and the Nearest Subspace on images with noise. We are not 

interested in testing Random OMP and Hash OMP here be­

cause (1) they are just fast greedy methods for looking for 

sparse solutions. In terms of the precision on sparse signal 

recovery, £1 is superior to them. (2) testing all of them on 

10 different noise factor with 10 different data split takes 

too much running time. Figure 4 shows that the recogni­

tion rate for the £2 norm method's is preserved reasonably 

well as the noise factor b increases. The Nearest Subspace 

method performs second best with nearly double the stan­

dard deviation (shown as the error bar width). The £1 norm 

method performs poorly as the noise factor increases3 This 

suggests that sparseness reinforcement on the G does not 

necessarily lead to robustness. 

7. Face recognition with disguise 

Now we study how the £2 norm method and the competi­

tors perform on faces with disguise. In the AR dataset, there 

are 26 images of each person : 14 images without disguises 

3We did not evaluate the £1 norm method for b > 50 as its speed and 
accuracy had diminished so far that it was not warranted. 



Table 1. Recognition Rate and Running Time on AR dataset. Offline = running time for offline processing. Est = running time for estimating 
coefficients. CheckID = running time for checking face identification for all test images (not per image). All running time are in seconds. 
RecRate = Recognition Rate. Data were randomly permuted 10 times, thus all measures are reported as the average ± standard deviation. 
Lowest running time and highest recognition rate are in bold. 

Algorithms Offline Est CheckID RecRate 

£2 28.74 ± 0.37s 2.71 ± 0.02s 69.15 ± 0.32s 95.89 ± 2.35% 
£l(d = 300) 1.01 ± O.Ols 5519.01 ± 23.70s 91.20 ± 0.77s 93.12 ± 2.94% 

£l(d = 200) 0.68 ± O.Ols 2893.47 ± 67.41s 102. 16 ± 1.79s 91.54 ± 3. 15% 
£l(d = 100) 0.35 ± O.OOs 1068.20 ± 25.94s 102. 13 ± 1.50s 86. 13 ± 3.87% 
Random OMP (d = 300) 1.98 ± O.01s 1177.52 ± 3.02s 91.90 ± 0.28s 84.85 ± 3.43% 
Random OMP (d = 200) 1.64 ± 0.02s 348.88 ± 1.24s 85.75 ± 0.15s 80.52 ± 4.12% 

Random OMP (d = 100) 1.3 1  ± O.Ols 44.85 ± 0.78s 60.95 ± 0.12s 64.68 ± 5.50% 
Hash OMP (d = 300) 4.51 ± O.04s 153.08 ± 7.39s 63.90 ± 0.94s 86.92 ± 3.44% 
Hash OMP (d = 200) 4.21 ± 0.02s 38.37 ± 2.11s 59.90 ± 0.39s 82.99 ± 3.63% 
Hash OMP (d = 100) 3.93 ± O.Ols 7.05 ± 0.20s 58.33 ± O.l 1s 64.49 ± 5.27% 
Nearest Subspace 1.06 ± 0.06s 3.07 ± 0.03s 0.07 ± O.01s 92.32 ± 4. 16% 

Table 2. Recognition Rate and Running Time on YaleB dataset. 
Algorithms Offline Est CheckID RecRate 

£2 29.02 ± 0.25s 3.55 ± 0.09s 70.60 ± O.71s 98.91 ± 1.37% 
£l(d = 300) 1.52 ± O.01s 4191.34 ± 14.16s 79.48 ± 0.03s 96.63 ± 3.03% 
Random OMP (d = 200) 2.43 ± O.Q7s 12291.77 ± 87.31s 48.21 ± 0.19s 93.75 ± 4.40% 
Hash OMP (d = 300) 7.04 ± 0.09s 3246.28 ± 250.37s 51.09 ± 0.98s 94.92 ± 3.86% 
Nearest Subspace 2.74 ± 0.03s 

but with various facial expressions and illumination condi­

tions, 6 images with sunglasses and 6 images with scarves. 

We thus split the dataset into a training set (i. e. 1400 un­

occluded faces only), a sunglasses test set ( 600 images of 

subjects wearing sunglasses) and a scarves test set (600 im­

ages of subjects wearing scarves). This ensures that none 

of the disguising objects (sunglasses or scarves) appears in 

the training set. Note that in [18] only a subset (200 out of 

600 ) of disguised images are used for testing in each dis­

guise case. When we apply all competitors to the full test 

sets, the results are very different from what was reported 

there, which will be discussed in detail later in this section 

after we introduce a method for dealing with the disguising 

objects. 

To represent the disguising objects Wright et al. in [18] 

expand the basis by a square identity matrix I, then seek a 

and {3 by the following £1 minimisation: 

(13a) 

a 
S.t. <I>x = <I> [A, 1][ {3 ], (13b) 

3.83 ± O.04s 0.02 ± O.OOs 96.87 ± 2. 12% 
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or alternatively 

a 
S.t. II <I> x - <I> [A, 1][ 

(3 lll£2 � E. (14b) 

Identity is again determined by identifying the minimal 

residuals among all subjects. This is problematic, how­

ever, since I can represent any possible face image without 

A. Alternatively, they construct more sophisticated features 

(e.g. partition features) to improve the performance of the 

£1 norm method. However, the features are not applied to 

other competitors in [18], thus it is not clear that whether 

the improvement comes from the £1 norm method or purely 

from the new features. 

We use a similar method (but with significantly fewer 

additional columns) to cope with the disguise. The key idea 

is to try to let (3 only represent non-face objects and let a 

only represent faces. Clearly an identity I is not a good 

choice for it is able to represent any image with that size. 

Thus we generate a number of images with one grey box in 

various locations to represent reasonable size objects. In the 

experiment, we use 8 large (30 by 30) box images and 144 

small (5 by 5) box images4 shown in Figure 5. The face 

4In fact, users can design other images as long as the images follow the 
"key idea" mentioned above. 



Table 3. Perfonnance comparison when subjects are disguised with sunglasses and scarves. Since we use all non-disguised faces as training 
set, we have one unique data split. 

Wearing Sunglasses Wearing Scarves 

Algorithms Omine Est CheckID RecRate Omine Est CheckID RecRate 

£2 48.22s 1.49s 35.01s 78.50% 47.52s 1.50s 34.89s 79.50% 

£1(d=300) 0.87s 2917.69s 47.56s 40.17% 0.93s 2935.33s 47.37s 55.17% 
Random OJ.\llP(d = 300) 1.60s 426.05s 40.20s 43.00% 1.70s 3170.02s 39.75s 27.00% 
Hash OMP(d = 300) 4.12s 189.95s 38.66s 46.50% 4.20s 1660.65s 37.29s 32.50% 

Table 4. £1 results on the downsampled AR dataset with disguise. Correct = the number of correct predictions of the test images. £1 = LP 
fonn uses (13). £lr = the reduced problem uses (14) . Both use d = 300. m is the size of images after downsampling. 

Wearing Sunglasses 

Algorithms Omine Est CheckID Correct 

£l(m = 540) 0. 19s 3679.03s 2.78s 294 
£1(m=130) 0.05s 2903.38s 0.97s 220 
£lr(m = 540) 0.19s 4828.12s 2.80s 291 

£lr(m = 130) 0.05s 4156.75s 0.98s 220 

images and the box images can be downloaded from the 

authors' website. Stacking the box images as columns, we 

get a matrix B. Let A = [A, B] and & = [ � ], and then 

input A (instead of A) to Algorithm I to estimate & (instead 

of 0). The person id is predicted via minimal residuals over 

all ok, while f3 can be ignored as it is shared by all subjects 

to represent the disguising objects. 

In order to ensure a fair comparison all competitors have 

been tested using the same A. Since we use all non­

disguised faces as the training set, we have one unique data 

split. Table 3 shows that in the case of both sunglasses and 

scarves the £2 norm method outperforms its competitors by 

a very large margin in terms of recognition rate and estima­

tion running time. In particular, £2 achieves 38.33% higher 

recognition rate than £1 in sunglasses case and 24.33% 
higher recognition rate than £1 in scarves case with over 

2,000 times speed up. 

It is interesting to note that the image reconstructed by 

the £1 coefficients is highly distorted (Figure 3(m) whereas 

that reconstructed by £2 (Figure3(e) ) is more faithful to the 

original image. The £1 norm gives a sparse 0 whereas £2 

norm gives a dense one as expected (see Figure 3(k) and 

3(c»). However, a sparse 0 does not necessarily lead to a 

more robust estimation. In fact, from Table 3, the dense 0 
via the £2 norm outperforms the sparse one via £1 in recog­

nition rate by a significant amount. 

We also tested the Nearest Subspace method on this 

dataset. Since the projection onto the additional B is not 

meaningful we instead used A, and achieved a recognition 

rate of 62.83% on the sunglasses test set and 13.83% recog­

nition rate on the scarves test set. The result is not directly 

Wearing Scarves 

RecRate Ot1line Est CheckID Correct RecRate 

49.00% 0.20s 3738.69s 2.80s 378 63.00% 
36.67% 0.05s 2853.37s 0.96s 179 29.83% 
48.50% 0.20s 4740.44s 2.78s 378 63.00% 
36.67% 0.06s 4148.06s 1.00s 180 30.00% 

559 

Figure 6. Prediction on downsampled AR faces with size 13 x 10. 
(a) test face. (b) predicted test face by £1 and £lr. (c) estimated 
coefficient 0 via £1. The coefficient achieved by £If is very sim­
ilar to (c), thus it is not presented here. (d) The difference of 
the estimated coefficients by £1 and £lr. The difference is only 
in 0(10-4). 

comparable to those in Table 3, but is still informative. 

Performance comparison against Wright et al. [18] In 

[18] the downsampling of AR face images from 165 x 120 
to 27 x 20 and 13 x 10 is justified as being necessary in or­

der to deal with the size of the database. They train on 799 
unoccluded images and test on two separate test sets (i.e. 

sunglasses and scarves) of 200 images. Since it is not stated 

which 799 of the 1400 unoccluded images or which 200 of 

the 600 sunglasses(or scarves) images are used, we have se­

lected all 1,400 unoccluded images as the training set, and 

600 sunglasses images and 600 scarf images as two separate 

testing sets. To better compare with their results, we down­

sample AR images to 27 x 20 and 13 x 10 as well, though the 

downsampling step itself is arguable: after downsampling , 

the 13 x 10 images are hardly recognisable as faces and it 

is extremely difficult for a human to recognise the subjects' 

identities (see Figure 6 (a) and (b) . We use both (13) and 

(14) as in [18]. Here (13) is a linear program, hence it is 



expected to be faster than (14), which is a convex problem 

(a second-order cone program) [5]. We solve both problems 

using cvx [9, 8]. For (14), we set E: = 0.05 as in [18]. The 

results are reported in Table 4. Both (13) and (14) produce 

almost identical recognition rates though (13) is faster as ex­

pected. The difference between the estimated coefficients is 

very small (in 0(10-4) see Figure 6(d» . Comparing to 

Table 3, downsampled £1 still produces results inferior to 

£2. Moreover, the recognition rate of downsampled £1 de­

creases as the image size m decreases. 

8. Discussion 

In this work we have compared Compressive Sensing 

face recognition methods, such as [18] and [14], with stan­

dard £2 approaches. We have carried out several experi­

ments to determine the performance of a number of differ­

ent methods for robust face recognition. 

The point that we want to make in this work is that there 

is no theoretical or empirical reason to expect that enforcing 

sparsity on the coefficients of (2) will improve robustness. 

The experiments carried out here clearly demonstrate this. 

Not only does solving (4) lead to worse performance, it is 

also less robust as well as orders of magnitudes slower than 

least-squares type approaches. 

We do not propose a novel robust method for face recog­

nition, but rather show that well know least-squares ap­

proaches out perform many of the existing, more compli­

cated algorithms. We are also of the opinion that if £1 

minimisation is intended to improve the robustness of the 

method then this should be achieved by solving (6) as dis­

cussed in section 3. This may be computationally expen­

sive, however, as it requires solving a linear program. Ways 

of efficiently solving (6) and an investigation in to the per­

formance of such a formulation is the topic of future work. 
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